miércoles, 4 de marzo de 2015

LA MAGIA DE LAS FUNCIONES LINEALES

 

A continuación se presenta la temática del blog mediante la siguiente línea de tiempo:
 


FUNCIÓN MATEMÁTICA

En matemáticas, se dice que una magnitud o cantidad es función de otra si el valor de la primera depende exclusivamente del valor de la segunda. Por ejemplo el área A de un círculo es función de su radio r: el valor del área es proporcional al cuadrado del radio, A = π·r2. Del mismo modo, la duración T de un viaje de tren entre dos ciudades separadas por una distancia d de 150 km depende de la velocidad v a la que este se desplace: la duración es inversamente proporcional a la velocidad, d / v. A la primera magnitud (el área, la duración) se la denomina variable dependiente, y la cantidad de la que depende (el radio, la velocidad) es lavariable independiente.
En análisis matemático, el concepto general de funciónaplicación omapeo se refiere a una regla que asigna a cada elemento de un primer conjunto un único elemento de un segundo conjunto (correspondencia matemática). Por ejemplo, cada número entero posee un único cuadrado, que resulta ser un número natural (incluyendo el cero):
... −2 → +4, −1 → +1, ±0 → ±0, 
+1 → +1, +2 → +4, +3 → +9, ... 
Esta asignación constituye una función entre el conjunto de los números enteros Zy el conjunto de los números naturales N. Aunque las funciones que manipulan números son las más conocidas, no son el único ejemplo: puede imaginarse una función que a cada palabra del español le asigne su letra inicial:
...,Estación → E,Museo → M,Arroyo → A,Rosa → R,Avión → A,...
Esta es una función entre el conjunto de las palabras del español y el conjunto de las letras del alfabeto español.
La manera habitual de denotar una función f es:
fA → B
a → f(a),
donde A es el dominio de la función f, su primer conjunto o conjunto de partida; y Bes el codominio de f, su segundo conjunto o conjunto de llegada. Por f(a) se denota la regla o algoritmo para obtener la imagen de un cierto objeto arbitrario del dominio A, es decir, el (único) objeto de B que le corresponde. En ocasiones esta expresión es suficiente para especificar la función por completo, infiriendo el dominio y codominio por el contexto.




Historia


Gottfried Leibniz acuñó el término «función» en el siglo XVII.
El concepto de función como un objeto matemático independiente, susceptible de ser estudiado por sí solo, no apareció hasta los inicios del cálculo en el siglo XVIIRené DescartesIsaac Newton y Gottfried Leibniz establecieron la idea de función como dependencia entre dos cantidades variables. Leibniz en particular acuñó los términos «función», «variable», «constante» y «parámetro». La notación f(x) fue utilizada por primera vez por A.C. Clairaut, y por Leonhard Euler en su obra Commentarii de San petersburgo en 1736
Inicialmente, una función se identificaba a efectos prácticos con una expresión analítica que permitía calcular sus valores. Sin embargo, esta definición tenía algunas limitaciones: expresiones distintas pueden arrojar los mismos valores, y no todas las «dependencias» entre dos cantidades pueden expresarse de esta manera. En 1837 Dirichlet propuso la definición moderna de función numérica como una correspondencia cualquiera entre dos conjuntos de números, que asocia a cada número en el primer conjunto un único número del segundo.
La intuición sobre el concepto de función también evolucionó. Inicialmente la dependencia entre dos cantidades se imaginaba como un proceso físico, de modo que su expresión algebraica capturaba la ley física que correspondía a este. La tendencia a una mayor abstracción se vio reforzada a medida que se encontraron ejemplos de funciones sin expresión analítica o representación geométrica sencillas, o sin relación con ningún fenómeno natural; y por los ejemplos «patológicos» como funciones continuas sin derivada en ningún punto.
Durante el siglo XIX Julius Wilhelm Richard DedekindKarl WeierstrassGeorg Cantor, partiendo de un estudio profundo de los números reales, desarrollaron la teoría de funciones, siendo esta teoría independiente del sistema de numeración empleado. Con el desarrollo de la teoría de conjuntos, en los siglos XIX y XX surgió la definición actual de función, como una correspondencia entre dos conjuntos de objetos cualesquiera, no necesariamente numéricos. También se asoció con otros conceptos vinculados como el de relación binaria.

Tomado de http://es.wikipedia.org/wiki/Funci%C3%B3n_matem%C3%A1tica

Tipos de Funciones Lineales

Las funciones lineales son aquellas que su representación gráfica es una línea recta. Su expresión análitica es de la forma:
f(x) = ax + b   donde a y b son dos números reales.
Dependiendo de los valores de a y b las funciones lineales se pueden clasificar en: 
CONSTANTES     Si a=0
 

DE PROPORCIONALIDAD     Si a≠0 y b=0
 
 Un caso particular de función de proporcionalidad es la función de IDENTIDAD
 

AFINES
Si m≠0 y n≠0
 

Funciones explícitas

Si se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x − 2

 

Funciones implícitas

Si no se pueden obtener las imágenes de x por simple sustitución, sino que es preciso efectuar operaciones.
5x − y − 2 = 0
Tomado de :http://matema-tic.blogspot.com/2012/04/tipos-de-funciones-lineales.html


ECUACIÓN DE LA RECTA



A partir del siguiente video podrás determinar como se halla la ecuación de la recta teniendo cierto tipo de parámetros






Tomado de:https://www.youtube.com/watch?v=ciIutiTfcbc

Atributos de la recta





Tomado de:https://www.youtube.com/watch?v=vFB-WgNhelY

POSICION RELATIVA DE DOS RECTAS EN EL PLANO


En el siguiente enlace encontraràs informaciòn relacionada con la posicion relativa de dos rectas en el plano

En el siguiente mapa mental tendrás un resumen de lo que se presentó en este espacio.


No hay comentarios:

Publicar un comentario